Database and Alignment Plans

02-12-2020

Daniel Brandenburg

Online Database

Conditions_bbc Conditions_dag Conditions_epd

Conditions_etof ➡ Conditions_fcs

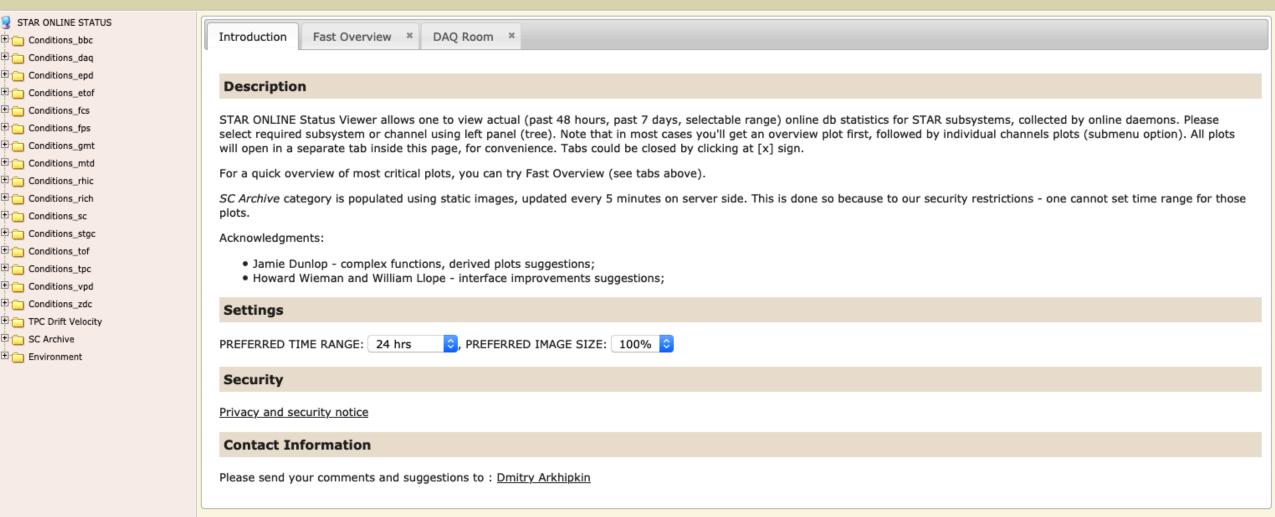
Conditions_fps

Conditions_gmt

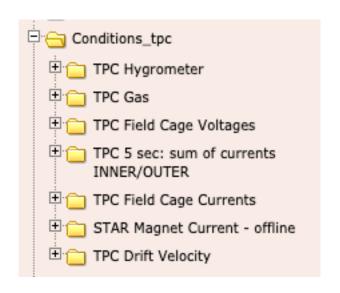
Conditions_mtd

Conditions_rhic Conditions_rich

⊕ Conditions_sc ⊕ Conditions_stgc


Conditions_tof

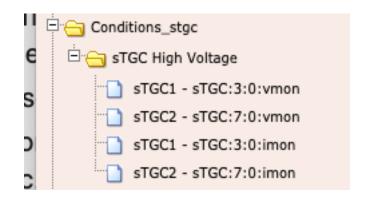
➡ Conditions_tpc


➡ ☐ Conditions_vpd Conditions_zdc

TPC Drift Velocity

STAR ONLINE STATUS viewer RUN 21

TPC example & Existing sTGC + FCS

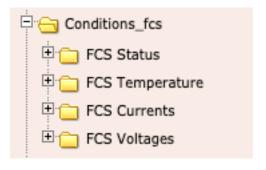


Electronics:

- TPC currents
- Voltages

Gas:

- TPC Gas (many flow meters and gas pressures)
- Hygrometer (Temp, dew point, humidity)



Electronics:

- Voltage
- Current

Gas:

- None yet

Electronics:

- Voltage
- Current
- Temperature
- LV status

What is needed

- FTT (sTGC)
 - Voltage, current, & gas (x4 modules x4 disks)
 - Flow meters or other global gas diagnostics
 - If I understand Jeff's framework, the will be saved here into online DB
 - Efficiency would be viewable in online DB or shift plots
 - Note TPC records drift velocity a similarly computed value
 - Status flags
- FST
 - Nothing in Online DB yet
 - Voltages + Currents
 - Status flags?
- FCS : anything more is needed?

Offline Database

- Primary uses
 - Offline calibration & reconstruction parameters
 - Geometry maps
- I was involved with most of TOF and eTOF calibration procedures.

Database structure: Calibrations_etof

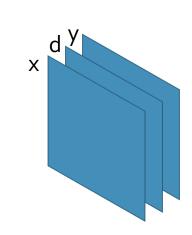
Table Name	Last entryTime	Index Field(s)	Records
<u>NodeRelation</u>	2019-12-16 18:48:26	ParentID NodeID BranchID ConfigID	14
Nodes	2019-12-16 18:47:36	name versionKey	15
<u>etofCalibParam</u>	2021-02-01 13:36:20	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	11
etofDetResolution	2021-02-01 13:36:23	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	4
<u>etofDigiSlewCorr</u>	2021-02-01 13:36:25	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	6
<u>etofDigiTimeCorr</u>	2021-02-01 13:36:28	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	9
<u>etofDigiTotCorr</u>	2021-02-01 13:36:31	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	7
<u>etofHitParam</u>	2021-02-01 13:36:33	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	4
<u>etofMatchParam</u>	2021-02-01 13:36:37	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	6
<u>etofPulserTimeDiffGbtx</u>	2021-02-01 13:36:39	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	4
<u>etofPulserTotPeak</u>	2021-02-01 13:36:41	nodeID elementID beginTime flavor deactive	4
<u>etofResetTimeCorr</u>	2021-02-01 13:36:43	nodeID elementID beginTime flavor deactive	50
<u>etofSignalVelocity</u>	2021-02-01 13:36:44	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	4
<u>etofSimEfficiency</u>	2021-02-01 13:36:47	nodeID elementID beginTime flavor deactive	4
<u>etofStatusMap</u>	2021-02-01 13:36:50	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	5
<u>etofTimingWindow</u>	2021-02-01 13:36:52	nodeID <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	7
schema	N/A		32
<u>structure</u>	2019-12-16 18:46:08	<u>name</u> <u>ID</u>	14

Database Pros / Cons

Pros

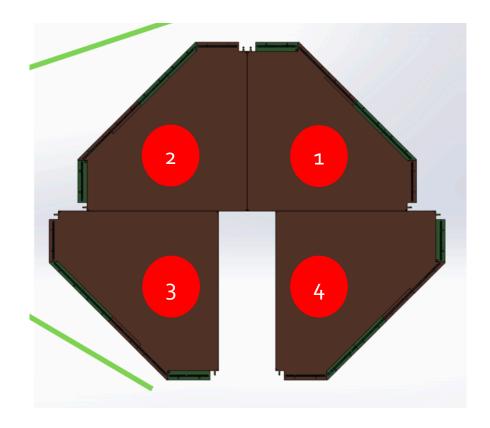
- Timestamped (history)
- Can be modified
- Provides authoritative information (single source)
- Accessible outside RCF (in docker containers, PDSF etc.)

• Cons

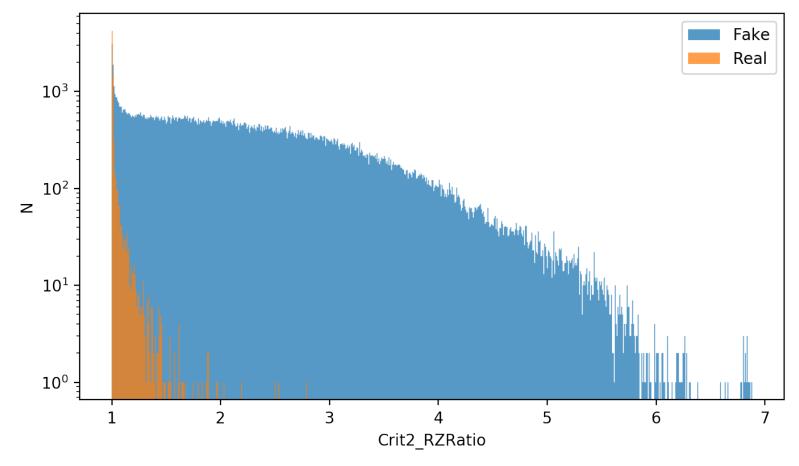

- Rigid schema (table structure) hard to change
- Not efficient for large data
- Significant work to setup table
- Tables must be updated for every year / Run (Species + energy, not "run")

What should go in offline DB?

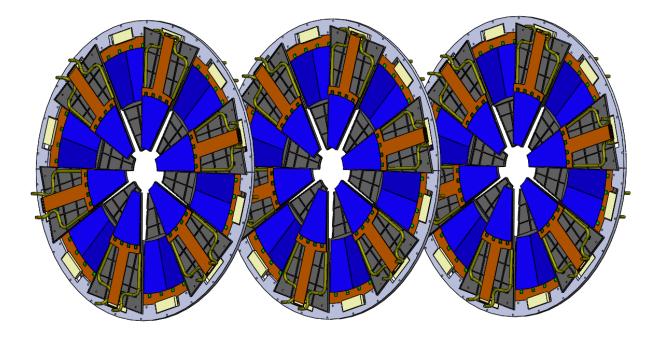
- Mapping tables if they are likely to change
- Status tables
 - Automate if possible
 - Fine granularity better improves realisticness of simulation
- Calibration parameters
 - Computed geometry alignment variables
 - Computed time alignments
- Detailed simulation parameters for mirroring data
 - E.g. for sTGC we may have cluster parameters per (x,y,D)/module/disk
 - Parameters for realistic representation of signals from electronics (if their status changes due to gains, etc from one Run to next)
- Question for Tonko: Can DAQ PCs read from Online and/or Offline DB?

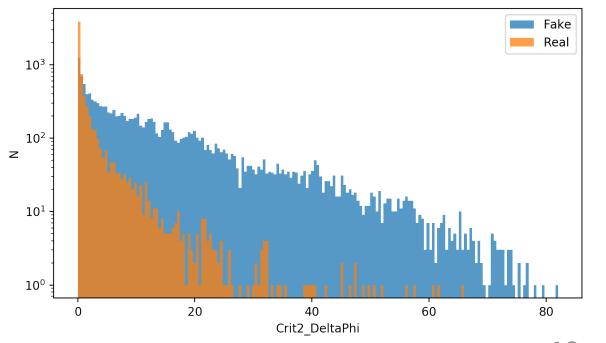

Preliminary Alignment Plan

- Precision alignment of forward systems
 - Combination of internal(local) + global alignments


sTGC Example:

- Internal alignment
 - X / d / Y correspondence
 - Module to module :
 - Translation: dx, dy, (dz?)
 - Rotation : αz
- Global Alignment
 - Translation: dx, dy, dz
 - Rotation : αx , αy


Global Tracking Alignment


- sTGC global alignment can be determined <u>iteratively</u>
- Optimize on straight-line correspondence of hits (in r-z)
- sTGC to FST alignment will be challenging

FST Alignment

- Internal alignment
 - Inner to outer sector
 - Translation: $dr \ d\phi$
 - Rotation: αz (local)
- Disk to disk & sTGC
 - Translations: dx, dy, dz
 - Rotations: αz , αy , αx
- FST has precision $d\phi$ optimize track seed Delta phi
- For both internal and global alignment

Alignment to FCS

- Use same technique as TPC track -> TOF matching
- Allow the FCS geometry to float (global translation)
- Project tracks to high quality clusters
 - Calculate dx, dy, dz from track projection vs. measured FCS position
- Iterative approach

Calibration dataset

- For tracking cosmic rays passing through FWD detectors would be ideal
- Important considerations
 - How to trigger on clean cosmics
 - Field on / field off
 - Statistics required for precision calibration
- Low multiplicity events may also be helpful
- Maybe use TPC + EPD/VPD/ZDC to select low mult events
- Calibrate tracking / FCS matching in these low mult events

Summary

- Online Database: For running / real-time parameters
 - Electronics: voltages, currents, status
 - Gas systems: Flow rates, pressures, etc.
 - Temperature and humidity
- Offline Database: For calibration, simulation, reconstruction
 - Each system will need a StXXXDbMaker
 - Setting up tables is involved (will cover at later time) so give thought to what should go into
 - Most necessary for things that change for each species / energy etc.
- Alignment
 - Geometry alignment through iterative procedure
 - Need cosmic / low mult data think about trigger / event selection